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Stable two-dimensional dispersion-managed soliton
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The existence of a dispersion-managed soliton in two-dimensional nonlinear Schro¨dinger equation with
periodically varying dispersion has been explored. The averaged equations for the soliton width and chirp are
obtained which successfully describe the long time evolution of the soliton. The slow dynamics of the soliton
around the fixed points for the width and chirp are investigated and the corresponding frequencies are calcu-
lated. Analytical predictions are confirmed by direct partial differential equation~PDE! and ordinary differen-
tial equation~ODE! simulations. Application to a Bose-Einstein condensate in optical lattice is discussed. The
existence of a dispersion-managed matter-wave soliton in such system is shown.
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I. INTRODUCTION

Nonlinear wave propagation in media with periodica
varying dispersion has attracted a huge interest in the re
years. A prominent example is a dispersion-managed~DM!
optical soliton, which is considered to become the ma
concept in future soliton-based communication systems
was shown theoretically and experimentally that the stro
DM regime provides the undisturbed propagation of pul
over very long distances. DM solitons are robust to
Gordon-Haus timing jitter, which makes them favorab
against the standard solitons@1,2#. Recently a model similar
to DM was developed for the propagation of an optical be
in a nonlinear waveguide array@3#. The width of beam and
amplitude of discrete spatial solitons, called diffractio
managed solitons@3#, evolve in time periodically. In this
context, the solitons considered in the present paper are c
to diffraction-managed solitons. A comprehensive review
nonlinear phenomena with optical solitons in continuous a
discrete systems is presented in Ref.@4#.

Mathematically this type of problem is described by t
one-dimensional~1D! nonlinear Schro¨dinger~NLS! equation
with periodic dispersion—a nonlinear analog of the Math
equation. The corresponding linear equation exhibits a
variety of stability and instability zones for the paramete
The existence of a DM soliton is one of the nontrivial co
sequences of the stable diagram for the periodic NLS eq
tion.

Although well studied in the 1D case, the two- and thre
dimensional extensions of this problem are far less explo
The major difference here is that, contrary to the 1D case,
NLS equation in two and three dimensions is unsta
against collapse. In particular, for the two dimensional~2D!
case the collapse occurs if the initial power exceeds so
critical value, i.e., ifE.Ecr . Recently it has been demon
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strated that thenonlinearitymanagement can prevent the co
lapse of solitons in 2D Kerr-type optical media@5,6#, as well
as in 2D Bose-Einstein condensates@7,8#. From these one
can reasonably expect that the dispersion management
play a balancing role also in the 2D case, and the stable
DM soliton can exist. Such a possibility has recently be
considered in Ref.@9# by construction of the ground state fo
the periodic 2D NLS equation based on the averaged va
tional principle and the techniques of integral inequalitie
i.e., the proof of the existence theorem for DM soliton w
presented. Analytical and numerical treatment of the pr
lem, however, has not been addressed so far.

The purpose of this paper is to derive analytical expr
sions for the parameters of a 2D DM soliton and to study
conditions for their stability. In this regard, we use a tim
dependent variational approach~VA ! to derive a set of ordi-
nary differential equations~ODEs! for the soliton param-
eters. The stability of the DM soliton is then inferred fro
the stability of fixed points of the VA equations.

The field dynamics is governed by the following 2D NL
equation:

iut1d~ t !Du1uuu2u50, ~1!

whered(t)5d01d1(t) represents a time-periodical dispe
sion coefficient. In the strong DM regime it is assumed th
d(t);(1/e)d(t/e),e!1 and the dispersion averaged ov
the period iŝ d(t)&5d0 ~in this cased0.0 corresponds to a
negative dispersion andd0,0 to a positive one!.

Equation ~1! can be associated with two main physic
problems:~i! beam propagation in 2D waveguide arrays w
periodically variable coupling between waveguides@10,11#;
~ii ! nonlinear matter waves of Bose-Einstein condensate
2D optical lattices.

In case~i! the model equations for a 2D nonlinear fib
array are given by@12#

icn,z1k~z!D2cn1v9cn,tt1xucnu2cn50, ~2!
©2003 The American Physical Society05-1
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wherecn is the envelope of electric field in thenth fiber,D2
is the finite second difference for 2D,k(z) is the variable
alongz coupling coefficient@10,11#, v9 is the group-velocity
dispersion, andx is the coefficient of nonlinearity. For long
wavelength pulses the group-velocity dispersionv9 can be
neglected. Introducing the dimensionless variableskz
5t,cn5A2k/xun , and considering the field distribution t
be broad in the transverse direction (.7 sites!, one arrives at
Eq. ~1! with time and space interchanged and withd(t) de-
scribing a varying diffraction along the longitudinal dire
tion. Note that although the intrinsic discreteness of the ar
may arrest the collapse of a 2D NLS wave, it does not n
essarily stabilize the pulse against decay. In the followi
we show that this can be done employing dispersion~diffrac-
tion! management by means of which a stable 2D soliton
be created before the strong shrinking of the wave occu

A similar situation arises in case~ii ! for a Bose-Einstein
condensate~BEC! confined in a 2D optical lattice. In this
case dynamics of the condensate is governed by the G
Pitaevskii~GP! equation

i\C t52
\2

2m
DC1V~x,y;t !C1g2DuCu2C, ~3!

where g2D5g3D /(A2paz), g3D54p\2as /m, az
5(\/mvz)

1/2, and with V(x,y)5V0(t)@cos2(k0x)
1cos2(k0y)# denoting an optical lattice with the amplitud
periodically varying in time. Spatiotemporal wave collap
in the framework of a similar equation@when the potential is
periodic in one directionV(x,y)5V0cos(k0x)] was consid-
ered in Ref.@13#, where analytical expression for the upwa
shift of collapse criterion was derived for potentials rapid
oscillating in space~largek0). By adopting an effective mas
description one can show that the 2D GP equation@14# can
be reduced to the DM NLS equation~1!. The effectiveness o
DM applied to quasi-1D atomic matter waves was expe
mentally demonstrated in Ref.@15#.

For analytical considerations it is convenient to refer
the axially symmetric case for whichD5]2/]r 21(1/
r )(]/]r ), and apply the harmonic modulation for dispersi
management:d(t)5d01d1sin(Vt). We remark that although
in the present paper we do not consider the case of two-
dispersion management: d(t)5d1 , if t11ntp.t
.ntp ,andd(t)5d2 , if ( n11)tp.t.ntp1t1 , where tp
5t11t2 , andn50,1,2, . . . , this approach can also be e
fectively used for the creation of stable 2D DM solitons.

Our analysis of the pulse dynamics under dispersion m
agement is based on the variational approach@2,16#, accord-
ing to which a space averaged LagrangianL̄5*Ldr̄ is con-
structed starting from a suitable ansatz for the soliton pro
In the following we shall calculateL̄ by using the following
Gaussian ansatz:

u~r ,t !5A~ t !expS 2
r 2

2a2
1 i

b~ t !r 2

2
1 if~ t !D , ~4!
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whereA,a,b,f denote the amplitude, width, chirp, and lin
ear phase of the soliton, respectively. The correspond
space averaged Lagrangian is

L̄

N
52

1

2
a2bt2f t2

d~ t !

a2
2d~ t !a2b21

N

4pa2
, ~5!

whereN5pA2a2 is the norm. The equations for the solito
parameters are derived from the Euler-Lagrange equat
for L̄ as

at52d~ t !b, b t5
2d~ t !2E

a3
, ~6!

whereb5ab, andE5*0
`uuu2rdr is the energy.

II. SYSTEM OF AVERAGED VARIATIONAL EQUATIONS

Let us consider the evolution of a pulse~a beam or a
soliton matter wave, depending on the physical system
consideration! using the division on the fast and slow tim
scales@17–19#. The width and chirp of the pulse are the
represented asa(t)5ā1a1 , b(t)5b̄1b1, where ā,b̄ are
slowly varying functions on the scale 1/e and a1 ,b1 are
rapidly varying functions. The solutions fora1 ,b1 are

a152
4d0d1

ā3~v0
21V2!

sin~Vt !2
2Vd1b̄

v0
21V2

cos~Vt !, ~7!

b15
6sd1b̄

ā4~v0
21V2!

sin~Vt !2
2d1V

ā3~v0
21V2!

cos~Vt !, ~8!

wherev0
2526s/ā4, s52d02E. Note thats,0 for over-

critical energy for collapseE.Ecr52 atd051 given by the
VA. The exact value, corresponding to the so-call
‘‘Townes soliton’’ is Ecr51.862 @20#. Considering the limit
of high frequenciesV2@v0

2;1 for the averaged paramete
of the system we finally get

āt52b̄S d01
3d1

2s

V2ā4D , ~9!

b̄ t5
s

ā3
1

12d1
2d0

V2ā7
1

12sd1
2b̄2

V2ā5
. ~10!

This system has the Hamiltonian structure with the Ham
tonian given by

H5
s

2ā2
1

2L2d0

ā6
1b̄2S d01

3L2s

ā4 D , L5
d1

V
, ~11!

from which the equations of motion follow asāt

5]H/]b̄, b̄ t52]H/]ā. From this Hamiltonian one can
also see that the mechanism for collapse suppression o
nates from the repulsive potential near the small values
5-2
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width ;1/ā6, which counteracts to the attractive force i
duced by the nonlinearity;1/ā2. The exact balance betwee
these forces gives rise to a stable state. This state is os
tory with the frequency which will be defined later. The st
bilization mechanism of a 2D NLS equation soliton is simi
to that of the inverted pendulum with oscillating pivot poi
@21#. We should note that the averaged dynamics is
potential—a velocity dependent term appears in the inte
tion potential @see fourth term in Eq.~11!#. Although this
term does not contribute to the fixed point, it is important
the description of oscillatory dynamics of 2D DM solitons

The systems~9! and ~10! have the fixed points

b̄50, āc5S 2
12d0L2

s D 1/4

. ~12!

Note thatL is proportional to the strength of the dispe
sion mapD52pd1 /V; thereforeāc;AD in analogy with
the estimate for a DM soliton in 1D case. There exists o
solution with a stationary width for the anomalous resid
dispersiond0.0,E.2d0. This is confirmed by the phas
portrait ~Fig. 1! of the variational system~6!.

Let us analyze the stability of fixed points for the anom
lous residual dispersiond0.0. We assumea5ac1ea1 ,b
5eb1. Substituting into Eq.~9! and Eq.~10!, and collecting
terms of ordere we find

a1,t5S 2d01
6L2s

a4 D b15Mb1 , ~13!

b1,t52S 3s

a4
1

84L2d0

a8 D a152Sa1 . ~14!

The oscillations of the width and chirp near the fixed poi
are stable ifMS.0, which is always satisfied ford0.0,
E.2d0. The frequency of secondary slow oscillations o
2D DM soliton is proportional toAMS.

III. NUMERICAL SIMULATIONS

To avoid the singularity atr 50 we consider the problem
in Cartesian coordinatesD5]x

21]y
2 and r 25x21y2. Then

FIG. 1. Phase portrait of the variational equations~6! with pa-
rametersd051, d153.5, V550, E5N/2p52.3034.
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numerical simulations can be performed by 2D fast Fou
transform@22#. The results are produced using a 2D grid
2563256 points over the domainx,yP@26.4, 6.4# and the
time stepdt50.001. To prevent the back action of a sm
amount of linear waves, resulting from the periodic pert
bation, the absorption on the domain boundaries is e
ployed, which also imitates the infinite domain conditio
The dispersion map was supposed to have parameterd0
51, d153.5, V550.

This choice of parameters corresponds to moderate
persion management (D.0.45). The axial section profile o
the wave functionuu(r ,t)u2 as obtained by direct numerica
solution of the partial differential equation~PDE! ~1! is pre-
sented in Fig. 2. As can be seen, rather stable quasiperi
dynamics is realized for a selected parameter setting. N
that if the periodic modulation of the dispersion had not be
applied, the initial waveform would have collapsed withint
;3. The dispersion management stabilizes the pulse aga
collapse or decay, providing undisturbed propagation o
very long distances. The agreement between the predict
of the variational equations~6! for the width of a 2D DM
soliton and the corresponding result from the full PDE sim
lations is reported in Fig. 3. As can be observed from t
figure, the width of a 2D DM soliton performs quasiperiod
motion with the average width ofā.0.8 according to varia-
tional equations, while the PDE simulation yieldsā.0.7.
The fixed point for the above set of parameter values,
cording to Eq.~12! is āc50.6635 ~see Fig. 1!. The fre-

FIG. 2. Evolution of a 2D DM soliton according to numeric
solution of Eq.~1!. The wave function is normalized toN52pE0

with E052.3034, and the dispersion map isd051, d153.5, V
550.

FIG. 3. Stable quasiperiodic dynamics of the width of a 2D D
soliton. Solid line—variational equations~6! solved forE5N/2p
52.3034, and the initial conditionsa(0)51, b(0)50. Dashed
line—full PDE simulations of Eq.~1!.
5-3
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quencies of slow dynamics given by the VA equations a
PDE are also in good agreement~Fig. 3!. The estimate for
the frequency of slow oscillations from Eq.~13! yields va

5AMS53.5; therefore, the period isTa51.9. The direct
gauge from Fig. 3 shows thatTa.2.2, in reasonable agree
ment with the above VA estimate.

For Bose-Einstein condensates in a 2D optical lattice
dispersion coefficient can be expressed asd(t)5m/m* (t) in
the effective mass formalism@14#. The effective massm*
substantially differs from the true massm ~becoming even
negative! and can be varied by changing the parameters
the periodic potential, or inducing the transitions betwe
energy bands.

For example, transitions between the first and sec
bands~at the band edges! in the optical lattice of strength
V052.4Erec ~whereErec5\2k0

2/2m is the recoil energy,k0

52p/l0 , l0 is the laser wavelength! lead to variation of the
dispersion coefficient in the ranged(t)5(22.5– 4.5) as con-
sidered above.
n,

nd

l-

n

nd
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IV. CONCLUSION

In conclusion, we have demonstrated the possibility
stabilize the 2D soliton with overcritical energy (E.Ecr) by
applying dispersion management. The developed the
based on the variational approximation successfully
scribes the long term evolution of a 2D DM soliton, which
confirmed by direct PDE simulations. We discussed the p
sible experimental realization of a stable 2D DM soliton
Bose-Einsten condensates confined to optical lattices.
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